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1 The Chain Rule for 2-Variable Functions



The Chain Rule

Calculus of 1-variable: If y = f (x) and x = g(t), then the composition
y = (f ◦ g)(t) = f (g(t)) is a function of t. The Chain Rule says that

y ′(t) = f ′(g(t)) g ′(t) or equivalently
dy

dt
=

dy

dx

dx

dt
.

Calculus of Multivariables: What about functions of more variables? For
example, if

x = x(t), y = y(t), and z = f (x , y)

so that
z = f (x(t), y(t))

then, in principle, the derivative z ′(t) should depend on the derivatives

dx

dt
,

dy

dt
,

∂z

∂x
,

∂z

∂y
.



The Multivariable Chain Rule

Multivariable Chain Rule — First Case: Suppose that z = f (x , y),
x = x(t), and y = y(t) are differentiable functions. Then
z = g(t) = f (x(t), y(t)) is a differentiable function of t and

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

In Lagrange notation, the formula is

g ′(t) = fx(x , y)x
′(t) + fy (x , y)y

′(t)

Idea: Changing t causes both x and y to change, which each cause
changes in z . The Chain Rule formula records the total change in z due
to a change in t, with contributions from both x and y .



The Chain Rule Tree
Let z = z(x , y), x = x(t), y = y(t).
The pieces of the formula for dz/dt correspond to branches in a tree.

1
1The first version of the tree was coded by Prof. Martin.



2 The chain Rule for Multivariable Functions



The Multivariable Chain Rule
Example 1: Calculate dz/dt if

z(x , y) = xy , x = x(t) = cos(t), y = y(t) = sin(t).

Solution: The Chain Rule states that

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

= (y) (− sin(t)) + (x) (cos(t))

= − sin2(t) + cos2(t)

To confirm, note that z is a function of the single variable t:

z(t) = z
(
x(t), y(t)

)
= cos(t) sin(t)

By the Product Rule,

dz

dt
= − sin2(t) + cos2(t)



Units in the Chain Rule

Let z = z(x , y), x = x(t), y = y(t), so that the Chain Rule says

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

The units of this equation make sense. For example, if

t = time (hours) x = length (meters)
y = temperature (◦C) z = number of bananas

then the units of the Chain Rule equation are

bananas
hour

=
bananas
meter

meters
hour

+
bananas

◦C

◦C
hour



Why The Chain Rule Works (Optional)
Suppose that x = x(t), and y = y(t) are differentiable at t = t0 and f (x, y) is differentiable at
(a, b) = (x(t0), y(t0)). By the definition of derivative,

dz

dt

∣∣∣∣
t=t0

= lim
∆t→0

f (x(t0 + ∆t), y(t0 + ∆t)) − f (x(t0), y(t0))

∆t
.

Let x1 = x(t0 + ∆t), y1 = (t0 + ∆t) and ∆x = x1 − a and ∆y = y1 − b.

= lim
∆t→0

f (x1, y1) − L(a,b)(x1, y1)

∆t
+ lim

∆t→0

L(a,b)(x1, y1) − f (a, b)

∆t

= lim
∆t→0

(
f (x1, y1) − L(a,b)(x1, y1)

∥(x1, y1) − (a, b)∥

) (∥(x1, y1) − (a, b)∥
∆t

)
+ lim

∆t→0

L(a,b)(x1, y1) − f (a, b)

∆t

Note that ∆x → 0 and ∆y → 0 as ∆t → 0 because x and y are differentiable, hence
continuous, functions of t. So this limit becomes

= lim
∆x → 0
∆y → 0

(
f (x1, y1) − L(a,b)(x1, y1)√

∆x2 + ∆y2

)
︸ ︷︷ ︸

=0, since f is diff.

lim
∆t→0

(√
∆x2 + ∆y2

∆t

)
︸ ︷︷ ︸

exists, since x, y are cont.

+ fx (a, b) lim
∆t→0

∆x

∆t
+ fy (a, b) lim

∆t→0

∆y

∆t

= fx (a, b)
dx

dt
+ fy (a, b)

dy

dt

Sketch of the Proof

https://mediahub.ku.edu/media/t/1_ysksn5ml


3 Chain Rule Dependency Tree Diagram



The Chain Rule Tree

Let w = f (x , y , z), x = x(t), y = y(t), z = z(t).
Again, the Chain Rule formula for dw/dt can be represented by a tree.

∂w

∂x

dx

dt

∂w

∂y

dy

dt

∂w

∂z

dz

dt
+ +

dw

dt
=

dx

dt

t

dy

dt

t

dz

dt

t

∂w

∂x
∂w

∂y

∂w

∂z

x(t) y(t) z(t)

w(x , y , z)



The Chain Rule: Another Case

For every composite function involving multiple variables, we can
keep track of the Chain Rule using a tree.

Suppose z = f (x , y), x = g(s, t), and y = h(s, t), with all functions
differentiable. Then z(s, t) = f (g(s, t), h(s, t)) is differentiable, and

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t

s t s t

x(s, t) y(s, t)

z(x , y)



Example 2: Find ∂z/∂s and ∂z/∂t if

z = x2y + 2xy4, x = st2, y = s2t.

Solution:

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s

= (2xy + 2y4)(t2) + (x2 + 8xy3)(2st)

= (2s3t3 + 2s8t4)(t2) + (s2t4 + 8s7t5)(2st)

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t

= (2xy + 2y4)(2st) + (x2 + 8xy3)(s2)

= (2s3t3 + 2s8t4)(2st) + (s2t4 + 8s7t5)(s2)



Tabular Chain Rule
Example 3: Consider f (u, v) = g

(
x(u, v) , y(u, v)

)
where

x(3, 4) = 1 xu(3, 4) = −3 xv (3, 4) = −1

y(3, 4) = 5 yu(3, 4) = 4 yv (3, 4) = 6

g(3, 4) = 7 gx(3, 4) = 3 gy (3, 4) = 2

g(1, 5) = −4 gx(1, 5) = 2 gy (1, 5) = −1

Compute fu(3, 4).
Solution

fu(3, 4)

= gx(1, 5)xu(3, 4) + gy (1, 5)yu(3, 4)

= (2)(−3) + (−1)(4) = −10
xu (3, 4) xv (3, 4)

u v

yu (3, 4) yv (3, 4)

u v

gx (x(3, 4), y(3, 4)) = gy (x(3, 4), y(3, 4)) =

gx (1, 5) gy (1, 5)

x(u, v) y(u, v)

z = g(x , y)



4 The General Chain Rule



The General Chain Rule

The Multivariable Chain Rule—General Case: Suppose that
f (x1, x2, . . . , xn) is a function of n variables, and x1, x2, . . . , xn are
functions of m independent variables t1, t2, . . . , tm. Then

∂f

∂tj
=

∂f

∂x1

∂x1

∂tj
+

∂f

∂x2

∂x2

∂tj
+ · · ·+ ∂f

∂xn

∂xn
∂tj

for each j = 1, . . . ,m.

The equations for all j can be expressed simultaneously in matrix form:

[
∂f
∂t1

· · · ∂f
∂tm

]
=

[
∂f
∂x1

· · · ∂f
∂xn

] 
∂x1
∂t1

· · · ∂x1
∂tm

...
...

∂xn
∂t1

· · · ∂xn
∂tm





Triple (Or More) Compositions

The tree technique works even for compositions of three or more
functions. For example, suppose that

x = x(t), y = y(t), v = v(x , y), w = w(x , y), q = q(v ,w).

so that q = q
(
v
(
x(t), y(t)

)
,w

(
x(t), y(t)

))
.

x y

t t

x y

t t

v w

q

dq

dt
=

∂q

∂v

∂v

∂x

dx

dt
+

∂q

∂v

∂v

∂y

dy

dt
+

∂q

∂w

∂w

∂x

dx

dt
+

∂q

∂w

∂w

∂y

dy

dt



Related Rates and the Multivariable Chain Rule

Example 4: The volume of a cone is V (r , h) =
πr2h

3
, where r and h are

the radius and the height of the cone. Both r and h are changing over

time. What is
dV

dt
at an instant when r = 5,

dr

dt
= 3, h = 6, and

dh

dt
= −3?

r

h

Solution (using the multivariable chain rule):

dV

dt
=

∂V

∂r

dr

dt
+

∂V

∂h

dh

dt

dV

dt
=

π

3
(2rh)

dr

dt
+

π

3
r2 dh

dt

dV

dt
=

π(2)(5)(3)(6)
3

+
π(52)(−3)

3
= 35π



5 Implicit Differentiation with the Chain Rule



Implicit Differentiation in Multiple Variables
If z = z(x , y) is defined implicitly by an equation F (x , y , z) = c , then we
can use the Chain Rule to find the partials zx = ∂z/∂x and zy = ∂z/∂y .

Example 5: Suppose that xz2 + y2z + xy = 1. Find ∂z/∂x .

Solution: Method 1:Differentiate both sides with respect to x :(
z2 + 2xzzx

)
+

(
2yyxz + y2zx

)
+ (xyx + y) = 0

Note that yx = ∂y/∂x = 0, because y is a separate independent
variable whose value is not affected by changes in x . (Alternatively, y is
fixed when we compute partials with respect to x .) So

z2 + 2xzzx + y2zx + y = 0 =⇒ zx =
−(z2 + y)

2xz + y2

or Method 2:

zx =
−Fx

Fz
=

−(z2 + y)

2xz + y2



Implicit Differentiation in Multiple Variables

if z = z(x , y) is defined implicitly by an equation F (x , y , z) = c , then the
general formulas (which you can memorize if you so choose) are:

∂z

∂x
= −Fx(x , y , z)

Fz(x , y , z)

∂z

∂y
= −Fy (x , y , z)

Fz(x , y , z)

You don’t need to memorize these formulas, since they both come
from the same process: differentiate both sides of the original equation
and solve for the partial you are interested in.

Observation: ∂z/∂x and ∂x/∂z are reciprocals.
The units in these formulas make sense (try it).



How to Memorize the Formula

∂F
∂x

∂F
∂y

∂z
∂x

∂z
∂y

∂F
∂z

C=F(x,y,z)

z(x , y)
x y

x y

0 = Fx(x , y , z) + Fz(x , y , z)
∂z

∂x

Solve for
∂z

∂x
=

−Fx

Fz

∂F
∂x

∂F
∂y

∂z
∂x

∂z
∂y

∂F
∂z

C=F(x,y,z)

z(x , y)
x y

x y

0 = Fy (x , y , z) + Fz(x , y , z)
∂z

∂y

Solve for
∂z

∂y
=

−Fy

Fz



Implicit Differentiation in Multiple Variables

Example 6: What is the slope of the surface given by
xy2 + x3z = z3 + 1 at the point (1, 1, 0) in the direction given by the
unit vector u⃗ = ⟨ 3

5 ,−
4
5 ⟩?

Solution: The answer is the directional derivative Du⃗f (1, 1), where
z = f (x , y) is the function defined implicitly by the given equation.

Differentiate with respect to x : Differentiate with respect to y :

y2 + (3x2z + x3zx) = 3z2zx 2xy + x3zy = 3z2zy

zx =
y2 + 3x2z

3z2 − x3 zy =
2xy

3z2 − x3

zx(1, 1, 0) = −1 zy (1, 1, 0) = −2

Answer: ∇f (1, 1) · u⃗ = ⟨−1,−2⟩ · ⟨ 3
5 ,−

4
5 ⟩ = 1.
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