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1 The Chain Rule for 2-Variable Functions



The Chain Rule

Calculus of 1-variable: If y = f(x) and x = g(t), then the composition
y = (f o g)(t) = f(g(t)) is a function of t. The Chain Rule says that

: dy dy dx
"(8) = F'(o(t "(t lentl o T T
y( ) (g( ))g( ) or equivalently p dx dt

Calculus of Multivariables: What about functions of more variables? For
example, if

x = x(t), y = y(t), and z="f(x,y)

so that
z = f(x(t), y(t))
then, in principle, the derivative z/(t) should depend on the derivatives

o dy 0 oz
dt’ dt’ 0x’ 9Oy’



The Multivariable Chain Rule

Multivariable Chain Rule — First Case: Suppose that z = f(x, y),
x = x(t), and y = y(t) are differentiable functions. Then
z = g(t) = f(x(t), y(t)) is a differentiable function of t and

dz _ 0z dx 0z dy
dt  Ox dt = Oy dt

In Lagrange notation, the formula is

g'(t) = £l y)X'(8) + £,(x, )y (1)

Idea: Changing t causes both x and y to change, which each cause
changes in z. The Chain Rule formula records the total change in z due
to a change in t, with contributions from both x and y.



The Chain Rule Tree

Let z = z(x,y), x = x(t), y = y(t).
The pieces of the formula for dz/dt correspond to branches in a tree.

z=2(x,y)
)

(=]
1

1The first version of the tree was coded by Prof. Martin.




2 The chain Rule for Multivariable Functions



The Multivariable Chain Rule
Example 1: Calculate dz/dt if

z(x,y) = xy, x = x(t) = cos(t), y = y(t) =sin(t).
Solution: The Chain Rule states that
dr_0zdx 0z dy
dt  Ox dt = Oy dt
= () (=sin(t)) + (x) (cos(t))

= —sin?(t) + cos?(t)

To confirm, note that z is a function of the single variable t:
2(t) = z(x(t), y(t)) = cos(t)sin(t)
By the Product Rule,

dz

az _ 2 2
pm sin“(t) + cos(t)



Units in the Chain Rule

Let z = z(x, y), x = x(t), y = y(t), so that the Chain Rule says

dz_0zdx 0z dy
dt  Ox dt Oy dt’

The units of this equation make sense. For example, if

t = time (hours) x = length (meters)

y = temperature (°C) z = number of bananas

then the units of the Chain Rule equation are

bananas bananas meters bananas °C

hour ~  meter hour °C  hour



Why The Chain Rule Works (Optional)

Suppose that x = x(t), and y = y(t) are differentiable at t = to and f(x, y) is differentiable at
(a, b) = (x(to), y(to)). By the definition of derivative,

dz
dt

L F o + AB), y(to + AY) — F(x(to), v()

t=tg At—0 At

Let x1 = x(to + At), y1 = (to + At) and Ax = x3 —aand Ay = y; — b.

. f(x1,y1) — L(a,b)(xh}&) h L(a,b)(xhh) — f(a, b)
= lim + lim
At—0 At At—0 At

i (fOa) ~ LanGa )Y (I0a) ~ GBI L LenCau) = f(,b)
At—0 [|(x2,y1) — (a, b)|| At At%D At

Note that Ax — 0 and Ay — 0 as At — 0 because x and y are differentiable, hence
continuous, functions of t. So this limit becomes

f(xa, —L s VAx2 + Ay? Ax A
= lim w lim VAXE A+ Ay? + f(a, b) I|m = + f,(a, b) I|m il
/Ax2 + Ay? At—0 At —0 At

Ax — 0
Ay — 0

exists, since x, y are cont.
0, since f is diff.

= f(a, b) f,(a, b)—

» Sketch of the Proof


https://mediahub.ku.edu/media/t/1_ysksn5ml

3 Chain Rule Dependency Tree Diagram



The Chain Rule Tree

Let w = f(x,y, z), x = x(t), y = y(t), z = z(t).
Again, the Chain Rule formula for dw/dt can be represented by a tree.

w(x,y,z)

dw Ow dx Ow dy ow dz
dt —  Ox dt Jy dt Oz dt



The Chain Rule: Another Case

For every composite function involving multiple variables, we can
keep track of the Chain Rule using a tree. J

Suppose z = f(x,y), x = g(s, t), and y = h(s, t), with all functions
differentiable. Then z(s, t) = f (g(s, t), h(s, t)) is differentiable, and

0z _ 0z 0x 0z 0y 0z _ 0z 0x 0z 0y
ds Ox 0s Oy Os ot Ox Ot Oy Ot
z(x, y)
x(s, 1) y(s.t)



Example 2: Find 0z/0s and 0z /0t if

Solution:

0z
s

0z
ot

z =Xy 4+ 2xy*, X = st°, y =s"t.

0z 0x | 0z dy
Ox Os Oy 0Os

= (2xy + 2y*)(t?) + (x® + 8xy>)(2st)
= (2533 4+ 258t%)(t2) + (s%t* + 8s"t%)(2st)

0z 0x | 0z oy
Ox Ot 0Oy Ot

= (2 +2y%)(2st) + (x* + 8xy°)(s?)

= (25313 + 25%t%)(2st) + (s2t* + 8s7t5)(s?)



Tabular Chain Rule

Example 3: Consider f(u,v) = g(x(u,v), y(u,v)) where
x(3,4) = x,(3,4)=-3  x,(3,4)=-1
y(3,4) = Yu(3,4) =4 »(3,4) =6
( ) 8<(3,4) =3 g,(3,4)=2
Compute f,(3,4).
Solution
fu(3,4) 7 = g(x,y)
= g(1,5)x(3,4) + g, (1,5)y.(3, 4) sl e o S
= (2)(-3) + (~1)(4) = ~10 x(u, v) y(u, v)
(3,4) xv Yu w3, a)



4 The General Chain Rule



The General Chain Rule

The Multivariable Chain Rule—General Case: Suppose that

f(x1,x2,...,x,) is a function of n variables, and x1, x, ..., x, are
functions of m independent variables t1, to, ..., ty. Then

of  Of Oxg Of Ox Of Ox,

- = 4= Tc 4t

8t_, 0x1 8tj Oxo atj Oxp 81:]
foreach j=1,....m.

The equations for all j can be expressed simultaneously in matrix form:

oty Oty
5 - sl=0EE o & :
Oxy Oxp

oty  Otm



Triple (Or More) Compositions

The tree technique works even for compositions of three or more
functions. For example, suppose that

X:X(t)v y:y(t)’ v = V(va)’ w = W(Xa}/)a q:q(vv W)'

so that g = q(v(x(t),y(t)), W(X(t),y(t))).

dg 9qdvdx 0qdvdy 0qdwdx 0Jq dwdy

dt 8v8xdt+8v8ydt +8W Ox dt+8w Jdy dt



Related Rates and the Multivariable Chain Rule

2h
Example 4: The volume of a cone is V/(r, h) = L, where r and h are

the radius and the height of the cone. Both r and h are changing over

%
time. What is d— at an instant when r = 5, LA 3, h=06, and
" dt dt

dt

>

— 37

Solution (using the multivariable chain rule):

0 dv _9Vdr 9Vdh

: dt — 9rdt ohdt

: dr (2 ) g a3 ar

: 2)(—

3 4V _ 7(6)E)6) | (5 >3( 3 _ 357

dt 3



5 Implicit Differentiation with the Chain Rule



Implicit Differentiation in Multiple Variables

If z=z(x,y) is defined implicitly by an equation F(x,y,z) = c, then we
can use the Chain Rule to find the partials z, = 0z/0x and z, = 0z/0y.

Example 5: Suppose that xz2 + y?z + xy = 1. Find 0z/0x.
Solution: Method 1:Differentiate both sides with respect to x:

(22 + 2xzz) + (2yyxz + y*z) + (xyx +y) =0

Note that y, = dy/dx = 0, because y is a separate independent
variable whose value is not affected by changes in x. (Alternatively, y is
fixed when we compute partials with respect to x.) So

(2
Z2+2xzzx+y2zx+y:0 = zxzz(xi:_y);)
or Method 2:
—F (2
2 = _—(Z+y)

F,  2xz+y2



Implicit Differentiation in Multiple Variables

if z=z(x,y) is defined implicitly by an equation F(x,y, z) = c, then the
general formulas (which you can memorize if you so choose) are:

9z F(x,y,2) 0z Fy(x,y,z)

&7 Fz(X7Y7Z) 67}/7 Fz(vavz)

You don’t need to memorize these formulas, since they both come
from the same process: differentiate both sides of the original equation
and solve for the partial you are interested in.

@ Observation: dz/0x and 0x/0z are reciprocals.

@ The units in these formulas make sense (try it).



How to Memorize the Formula

0z
:FX PS8 Fz PS8 a_
0= Ry 2) Ry )
Solve for 3—)Z< = _FZX

0=F/(x,y,z)+ F,(x,y,2)
—F,

Solve for % =

dy

F;



Implicit Differentiation in Multiple Variables

Example 6: What is the slope of the surface given by

xy? 4+ x3z = z3 + 1 at the point (1,1,0) in the direction given by the
unit vector i = (3,-1)?

Solution: The answer is the directional derivative Dzf(1,1), where

z = f(x,y) is the function defined implicitly by the given equation.

Differentiate with respect to x: | Differentiate with respect to y:
y? 4+ (3x%z + x3z,) = 372%z, 2xy + x3z, = 372%z,
y? +3x2z 2xy
= Zy= 3573
322 — x3 3z2 — x
z,(1,1,0) = -1 z,(1,1,0) = =2

Answer: VF(1,1)-0=(-1,-2)-(3,-2) =1
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