Section 14.6

The Chain Rule

The Chain Rule for 2-Variable Functions
The chain Rule for Multivariable Functions Units in Chain Rule
The Proof
Chain Rule Dependency Tree Diagram Examples

The General Chain Rule Implicit Differentiation with the Chain Rule

1 The Chain Rule for 2-Variable Functions

The Chain Rule

Calculus of 1-variable: If $y=f(x)$ and $x=g(t)$, then the composition $y=(f \circ g)(t)=f(g(t))$ is a function of t. The Chain Rule says that

$$
y^{\prime}(t)=f^{\prime}(g(t)) g^{\prime}(t) \quad \text { or equivalently } \quad \frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

Calculus of Multivariables: What about functions of more variables? For example, if

$$
x=x(t), \quad y=y(t), \quad \text { and } \quad z=f(x, y)
$$

so that

$$
z=f(x(t), y(t))
$$

then, in principle, the derivative $z^{\prime}(t)$ should depend on the derivatives

$$
\frac{d x}{d t}, \quad \frac{d y}{d t}, \quad \frac{\partial z}{\partial x}, \quad \frac{\partial z}{\partial y} .
$$

The Multivariable Chain Rule

Multivariable Chain Rule - First Case: Suppose that $z=f(x, y)$, $x=x(t)$, and $y=y(t)$ are differentiable functions. Then $z=g(t)=f(x(t), y(t))$ is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

In Lagrange notation, the formula is

$$
g^{\prime}(t)=f_{x}(x, y) x^{\prime}(t)+f_{y}(x, y) y^{\prime}(t)
$$

Idea: Changing t causes both x and y to change, which each cause changes in z. The Chain Rule formula records the total change in z due to a change in t, with contributions from both x and y.

The Chain Rule Tree

Let $z=z(x, y), x=x(t), y=y(t)$.
The pieces of the formula for $d z / d t$ correspond to branches in a tree.

$$
z=z(x, y)
$$

$$
K<\triangleleft D \gg 1 \rightarrow++
$$

${ }^{1}$ The first version of the tree was coded by Prof. Martin.

2 The chain Rule for Multivariable Functions

The Multivariable Chain Rule

Example 1: Calculate $d z / d t$ if

$$
z(x, y)=x y, \quad x=x(t)=\cos (t), \quad y=y(t)=\sin (t)
$$

Solution: The Chain Rule states that

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =(y)(-\sin (t))+(x)(\cos (t)) \\
& =-\sin ^{2}(t)+\cos ^{2}(t)
\end{aligned}
$$

To confirm, note that z is a function of the single variable t :

$$
z(t)=z(x(t), y(t))=\cos (t) \sin (t)
$$

By the Product Rule,

$$
\frac{d z}{d t}=-\sin ^{2}(t)+\cos ^{2}(t)
$$

Units in the Chain Rule

Let $z=z(x, y), x=x(t), y=y(t)$, so that the Chain Rule says

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

The units of this equation make sense. For example, if

$$
\begin{array}{ll}
t=\text { time (hours) } & \\
y=\text { temperature }\left({ }^{\circ} \mathrm{C}\right) & \\
z=\text { length (meters) } \\
y=\text { number of bananas }
\end{array}
$$

then the units of the Chain Rule equation are

$$
\frac{\text { bananas }}{\text { hour }}=\frac{\text { bananas }}{\text { meter }} \frac{\text { meters }}{\text { hour }}+\frac{\text { bananas }}{{ }^{\circ} \mathrm{C}} \frac{{ }^{\circ} \mathrm{C}}{\text { hour }}
$$

Why The Chain Rule Works (Optional)

Suppose that $x=x(t)$, and $y=y(t)$ are differentiable at $t=t_{0}$ and $f(x, y)$ is differentiable at $(a, b)=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$. By the definition of derivative,

$$
\left.\frac{d z}{d t}\right|_{t=t_{\mathbf{0}}}=\lim _{\Delta t \rightarrow \mathbf{0}} \frac{f\left(x\left(t_{\mathbf{0}}+\Delta t\right), y\left(t_{\mathbf{0}}+\Delta t\right)\right)-f\left(x\left(t_{\mathbf{0}}\right), y\left(t_{0}\right)\right)}{\Delta t}
$$

Let $x_{1}=x\left(t_{0}+\Delta t\right), y_{1}=\left(t_{0}+\Delta t\right)$ and $\Delta x=x_{1}-a$ and $\Delta y=y_{1}-b$.

$$
\begin{gathered}
=\lim _{\Delta t \rightarrow 0} \frac{f\left(x_{\mathbf{1}}, y_{1}\right)-L_{(a, b)}\left(x_{\mathbf{1}}, y_{\mathbf{1}}\right)}{\Delta t}+\lim _{\Delta t \rightarrow 0} \frac{L_{(a, b)}\left(x_{\mathbf{1}}, y_{1}\right)-f(a, b)}{\Delta t} \\
=\lim _{\Delta t \rightarrow 0}\left(\frac{f\left(x_{\mathbf{1}}, y_{1}\right)-L_{(a, b)}\left(x_{\mathbf{1}}, y_{\mathbf{1}}\right)}{\left\|\left(x_{\mathbf{1}}, y_{\mathbf{1}}\right)-(a, b)\right\|}\right)\left(\frac{\left\|\left(x_{\mathbf{1}}, y_{\mathbf{1}}\right)-(a, b)\right\|}{\Delta t}\right)+\lim _{\Delta t \rightarrow \mathbf{0}} \frac{L_{(a, b)}\left(x_{\mathbf{1}}, y_{\mathbf{1}}\right)-f(a, b)}{\Delta t}
\end{gathered}
$$

Note that $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$ as $\Delta t \rightarrow 0$ because x and y are differentiable, hence continuous, functions of t. So this limit becomes

$$
\begin{gathered}
=\underbrace{\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}}\left(\frac{f\left(x_{\mathbf{1}}, y_{\mathbf{1}}\right)-L_{(a, b)}\left(x_{\mathbf{1}}, y_{\mathbf{1}}\right)}{\sqrt{\Delta x^{2}+\Delta y^{2}}}\right)}_{=0, \text { since } f \text { is diff. }} \underbrace{\lim _{\Delta t \rightarrow 0}\left(\frac{\sqrt{\Delta x^{2}+\Delta y^{2}}}{\Delta t}\right)}_{\text {exists, since } x, y \text { are cont. }}+f_{x}(a, b) \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}+f_{y}(a, b) \lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t} \\
=f_{x}(a, b) \frac{d x}{d t}+f_{y}(a, b) \frac{d y}{d t}
\end{gathered}
$$

3 Chain Rule Dependency Tree Diagram

The Chain Rule Tree

Let $w=f(x, y, z), x=x(t), y=y(t), z=z(t)$.
Again, the Chain Rule formula for $d w / d t$ can be represented by a tree.

The Chain Rule: Another Case

For every composite function involving multiple variables, we can keep track of the Chain Rule using a tree.

Suppose $z=f(x, y), x=g(s, t)$, and $y=h(s, t)$, with all functions differentiable. Then $z(s, t)=f(g(s, t), h(s, t))$ is differentiable, and

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Example 2: Find $\partial z / \partial s$ and $\partial z / \partial t$ if

$$
z=x^{2} y+2 x y^{4}, \quad x=s t^{2}, \quad y=s^{2} t
$$

Solution:

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& =\left(2 x y+2 y^{4}\right)\left(t^{2}\right)+\left(x^{2}+8 x y^{3}\right)(2 s t) \\
& =\left(2 s^{3} t^{3}+2 s^{8} t^{4}\right)\left(t^{2}\right)+\left(s^{2} t^{4}+8 s^{7} t^{5}\right)(2 s t) \\
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
& =\left(2 x y+2 y^{4}\right)(2 s t)+\left(x^{2}+8 x y^{3}\right)\left(s^{2}\right) \\
& =\left(2 s^{3} t^{3}+2 s^{8} t^{4}\right)(2 s t)+\left(s^{2} t^{4}+8 s^{7} t^{5}\right)\left(s^{2}\right)
\end{aligned}
$$

Tabular Chain Rule

Example 3: Consider $f(u, v)=g(x(u, v), y(u, v))$ where

$$
\begin{array}{lll}
x(3,4)=1 & x_{u}(3,4)=-3 & x_{v}(3,4)=-1 \\
y(3,4)=5 & y_{u}(3,4)=4 & y_{v}(3,4)=6 \\
g(3,4)=7 & g_{x}(3,4)=3 & g_{y}(3,4)=2 \\
g(1,5)=-4 & g_{x}(1,5)=2 & g_{y}(1,5)=-1
\end{array}
$$

Compute $f_{u}(3,4)$.

Solution

$$
\begin{aligned}
& f_{u}(3,4) \\
& =g_{x}(1,5) x_{u}(3,4)+g_{y}(1,5) y_{u}(3,4) \\
& =(2)(-3)+(-1)(4)=-10
\end{aligned}
$$

4 The General Chain Rule

The General Chain Rule

The Multivariable Chain Rule-General Case: Suppose that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a function of n variables, and $x_{1}, x_{2}, \ldots, x_{n}$ are functions of m independent variables $t_{1}, t_{2}, \ldots, t_{m}$. Then

$$
\frac{\partial f}{\partial t_{j}}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{j}}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{j}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{j}}
$$

for each $j=1, \ldots, m$.
The equations for all j can be expressed simultaneously in matrix form:

$$
\left[\begin{array}{lll}
\frac{\partial f}{\partial t_{1}} & \cdots & \frac{\partial f}{\partial t_{m}}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{\partial x_{1}}{\partial t_{1}} & \cdots & \frac{\partial x_{1}}{\partial t_{m}} \\
\vdots & & \vdots \\
\frac{\partial x_{n}}{\partial t_{1}} & \cdots & \frac{\partial x_{n}}{\partial t_{m}}
\end{array}\right]
$$

Triple (Or More) Compositions

The tree technique works even for compositions of three or more functions. For example, suppose that

$$
x=x(t), \quad y=y(t), \quad v=v(x, y), \quad w=w(x, y), \quad q=q(v, w)
$$

so that $q=q(v(x(t), y(t)), w(x(t), y(t)))$.

$$
\frac{d q}{d t}=\frac{\partial q}{\partial v} \frac{\partial v}{\partial x} \frac{d x}{d t}+\frac{\partial q}{\partial v} \frac{\partial v}{\partial y} \frac{d y}{d t}+\frac{\partial q}{\partial w} \frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial q}{\partial w} \frac{\partial w}{\partial y} \frac{d y}{d t}
$$

Related Rates and the Multivariable Chain Rule

Example 4: The volume of a cone is $V(r, h)=\frac{\pi r^{2} h}{3}$, where r and h are the radius and the height of the cone. Both r and h are changing over time. What is $\frac{d V}{d t}$ at an instant when $r=5, \frac{d r}{d t}=3, h=6$, and $\frac{d h}{d t}=-3$?

Solution (using the multivariable chain rule):

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{\partial V}{\partial r} \frac{d r}{d t}+\frac{\partial V}{\partial h} \frac{d h}{d t} \\
& \frac{d V}{d t}=\frac{\pi}{3}(2 r h) \frac{d r}{d t}+\frac{\pi}{3} r^{2} \frac{d h}{d t} \\
& \frac{d V}{d t}=\frac{\pi(2)(5)(3)(6)}{3}+\frac{\pi\left(5^{2}\right)(-3)}{3}=35 \pi
\end{aligned}
$$

5 Implicit Differentiation with the Chain Rule

Implicit Differentiation in Multiple Variables

If $z=z(x, y)$ is defined implicitly by an equation $F(x, y, z)=c$, then we can use the Chain Rule to find the partials $z_{x}=\partial z / \partial x$ and $z_{y}=\partial z / \partial y$.
Example 5: Suppose that $x z^{2}+y^{2} z+x y=1$. Find $\partial z / \partial x$.
Solution: Method 1:Differentiate both sides with respect to x :

$$
\left(z^{2}+2 x z z_{x}\right)+\left(2 y y_{x} z+y^{2} z_{x}\right)+\left(x y_{x}+y\right)=0
$$

Note that $y_{x}=\partial y / \partial x=0$, because y is a separate independent variable whose value is not affected by changes in x. (Alternatively, y is fixed when we compute partials with respect to x.) So

$$
z^{2}+2 x z z_{x}+y^{2} z_{x}+y=0 \quad \Longrightarrow \quad z_{x}=\frac{-\left(z^{2}+y\right)}{2 x z+y^{2}}
$$

or Method 2:

$$
z_{x}=\frac{-F_{x}}{F_{z}}=\frac{-\left(z^{2}+y\right)}{2 x z+y^{2}}
$$

Implicit Differentiation in Multiple Variables

if $z=z(x, y)$ is defined implicitly by an equation $F(x, y, z)=c$, then the general formulas (which you can memorize if you so choose) are:

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}(x, y, z)}{F_{z}(x, y, z)} \quad \frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)}
$$

You don't need to memorize these formulas, since they both come from the same process: differentiate both sides of the original equation and solve for the partial you are interested in.

- Observation: $\partial z / \partial x$ and $\partial x / \partial z$ are reciprocals.
- The units in these formulas make sense (try it).

How to Memorize the Formula

$0=F_{x}(x, y, z)+F_{z}(x, y, z) \frac{\partial z}{\partial x}$
$0=F_{y}(x, y, z)+F_{z}(x, y, z) \frac{\partial z}{\partial y}$
Solve for $\frac{\partial z}{\partial x}=\frac{-F_{x}}{F_{z}}$
Solve for $\frac{\partial z}{\partial y}=\frac{-F_{y}}{F_{z}}$

Implicit Differentiation in Multiple Variables

Example 6: What is the slope of the surface given by $x y^{2}+x^{3} z=z^{3}+1$ at the point $(1,1,0)$ in the direction given by the unit vector $\overrightarrow{\mathrm{u}}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle$?

Solution: The answer is the directional derivative $D_{\overrightarrow{\mathrm{u}}} f(1,1)$, where $z=f(x, y)$ is the function defined implicitly by the given equation.

Differentiate with respect to $x:$	Differentiate with respect to $y:$
$y^{2}+\left(3 x^{2} z+x^{3} z_{x}\right)=3 z^{2} z_{x}$	$2 x y+x^{3} z_{y}=3 z^{2} z_{y}$
$z_{x}=\frac{y^{2}+3 x^{2} z}{3 z^{2}-x^{3}}$	$z_{y}=\frac{2 x y}{3 z^{2}-x^{3}}$
$z_{x}(1,1,0)=-1$	$z_{y}(1,1,0)=-2$

Answer: $\nabla f(1,1) \cdot \vec{u}=\langle-1,-2\rangle \cdot\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle=1$.

